
Multi-Agent Pickup and Delivery with Task Deadlines
Xiaohu Wu

Nanyang Technological University

Singapore

xiaohu.wu@ntu.edu.sg

Yihao Liu

Nanyang Technological University

Singapore

yihao002@ntu.edu.sg

Xueyan Tang

Nanyang Technological University

Singapore

asxytang@ntu.edu.sg

Wentong Cai

Nanyang Technological University

Singapore

aswtcai@ntu.edu.sg

Funing Bai

NCS Group

Singapore

eliza.bai@ncs.com.sg

Gilbert Khonstantine

Nanyang Technological University

Singapore

gkhonsta001@ntu.edu.sg

Guopeng Zhao

NCS Group

Singapore

leo.zhao@ncs.com.sg

ABSTRACT

We study the multi-agent pickup and delivery problem with task

deadlines, where a team of agents execute a batch of tasks with

individual deadlines to maximize the number of tasks completed

by their deadlines. Existing approaches to multi-agent pickup and

delivery typically address task assignment and path planning sepa-

rately. We take an integrated approach that assigns and plans one

task at a time taking into account the agent states resulting from

all the previous task assignments and path planning. We define

metrics to effectively determine which task is most worth assign-

ment next and which agent ought to execute a given task, and

propose a priority-based framework for joint task assignment and

path planning. We leverage the bounding and pruning techniques

in the proposed framework to greatly improve computational effi-

ciency. We also refine the dummy path method for collision-free

path planning. The effectiveness of the framework is validated by

extensive experiments.

ACM Reference Format:

Xiaohu Wu, Yihao Liu, Xueyan Tang, Wentong Cai, Funing Bai, Gilbert

Khonstantine, and Guopeng Zhao. 2022. Multi-Agent Pickup and Delivery

with Task Deadlines. In WI-IAT’21. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Multi-agent systems arise in many real-world applications, in-

cludingwarehousemanagement [13], aircraft towing [9] andmobile

office service [11]. They are operated in a common environment

and plan collision-free paths among agents, each continuously at-

tending to tasks one by one. Each task is characterized by a pickup

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WI-IAT’21, December 2021, Melbourne, Australia
© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

location and a delivery location. To execute a task, the agent has to

move from its current location via the pickup location to the deliv-

ery location. This is known as Multi-Agent Pickup-and-Delivery

(MAPD) [1, 4–7]. When planning paths for agents, some metric is

to be optimized. Previous works have considered either makespan

[5] or a common deadline for all tasks [8]; the latter is motivated

by scenarios such as emergency evacuation where it is necessary

to move as many agents as possible to a safe area before a disaster

occurs.

In reality, there are also many scenarios where tasks have in-

dividual deadlines. Each task has to be completed (i.e., the agent

executing the task arrives at the delivery location) by a specific

deadline, in order to satisfy distinct customers with the delivered

services/items in a timely manner. The tasks and their deadlines

are often known a priori. For example, in the day-to-day operations

of a warehouse, items have to be picked up from storage locations

to inventory stations by specific deadlines so that they can become

available for further processing. In an aircraft towing system, air-

crafts need to be transported from the airport gates to the runway

on time to ensure timely takeoff. In this paper, we study MAPD

with task deadlines. Our objective is to maximize the number of

tasks completed by their deadlines.

Real-time job scheduling has been studied extensively in com-

puter systems [3]. In this paper, we enable the application of priority-

based rules in real-time scheduling to the domain of MAPD. What

complicates our problem is that it additionally involves path plan-

ning with collision-free requirements. As such, tasks have distinct

completion times when executed by different agents, and the time

needed by an agent to execute a task is not known beforehand

in that it is dependent on the assignment and path planning of

other concurrent tasks. We focus on two questions: (i) given a set

of unassigned tasks, which task is most worth assignment next?

and (ii) given a task, which agent should be used to execute it? We

define proper metrics to address these questions and propose an

effective priority-based framework for task assignment and path

planning.

Related Work. Multi-Agent Path Finding (MAPF) is a classical

problem that aims to find collision-free paths for a group of agents to

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

WI-IAT’21, December 2021, Melbourne, Australia Xiaohu Wu, Yihao Liu, Xueyan Tang, Wentong Cai, Funing Bai, Gilbert Khonstantine, and Guopeng Zhao

move from their current locations to their respective target locations

with some metric optimized [10]. Deadlines have been considered

in the MAPF problem where there is a common deadline for all

agents and the objective is to maximize the number of agents that

can reach their target locations by the deadline. This problem is NP-

hard. Optimal solutions can be derived via search-based approaches

or integer linear programming [8].

MAPD is an extension to the MAPF problem where a set of

delivery tasks are to be assigned to the agents for execution. A

MAPD solution needs to determine the tasks as well as their order

to be executed by each agent and plan collision-free paths for the

agents to complete their assigned tasks. Heuristic approaches have

been proposed to optimize the makespan metric for MAPD [1, 4, 5].

These approaches typically consist of two separate phases. The

first phase determines the task assignment without considering the

potential conflicts among agents. The second phase plans collision-

free paths for the agents to execute their tasks.

Liu et al. [5] construct a virtual complete graph among all tasks

and agents and find a Hamiltonian cycle in the graph. The task se-

quence from one agent to the next agent along the cycle is assigned

to the former. Two approaches are then developed for path plan-

ning. The first approach plans paths for the agents in a decreasing

order of the estimated timesteps to complete their task sequences.

The second approach improves the first one by allowing agents to

swap their next tasks to be executed. Such swapping can optimize

the costs based on the current states of the agents. Li et al. [4]

assume that there is a task assigner that is independent of the path

planner and continuously assigns tasks to agents. They propose

a windowed scheme to replan paths once every fixed number of

timesteps. Farinelli et al. [1] apply the token-passing scheme where

agents take actions in the same cyclic order in the two phases. First,

agents take turn to greedily get one task at a time. For each agent,

the order of acquiring tasks is also the order of executing tasks.

Second, each agent plans its own collision-free path based on the

paths that have been planned for the other agents so far. The above

approaches do not consider any deadline requirements and cannot

be directly applied to our problem where the tasks have deadlines

to meet.

Contributions. In this paper, we adopt an integrated approach

that conducts task assignment and path planning together. In each

task assignment, a favorable agent is chosen to execute the next

task that is currently the most urgent according to the paths al-

ready planned for the tasks previously assigned. We define a metric

called the flexibility of a task as the task deadline minus the earliest

possible completion time among all the agents to execute the task.

This metric allows us to effectively determine which task is most

worth assignment next. Based on this metric, we propose a priority-

based framework for joint task assignment and path planning. Its

effectiveness is verified through experimental evaluations.

In our approach, after the assignment and path planning of ev-

ery task, the states of the agents change. Thus, a key challenge

of implementation is to compute the flexibility values of the unas-

signed tasks at every assignment based on the current states of the

agents. We leverage the bounding and pruning techniques in our

framework to greatly improve computational efficiency. A state-of-

the-art method to avoid collisions in path planning is to reserve for

every agent a dummy path from the agent’s current location to its

parking location whenever the agent finishes one task [5]. This may

involve plenty of extra vain computation of paths that the agents

will never use. In this paper, we improve this method by identi-

fying the conditions under which planning such dummy paths is

necessary and selectively reserving dummy paths for agents.

A brief introduction and some preliminary results of our work

were presented as a 2-page extended abstract [12].

2 PROBLEM DEFINITION

Consider an undirected connected graph G = (𝑉 , 𝐸) where the
nodes in𝑉 correspond to locations and each edge in 𝐸 corresponds

to a connection between two locations along which agents can

move. There are a set of 𝑀 agents A = {𝑎1, . . . , 𝑎𝑀 }, and a set of

𝑁 tasks T = {𝑡1, . . . , 𝑡𝑁 }. All tasks are available at timestep 0. Each

task 𝑡 𝑗 has a pickup location 𝑠 𝑗 ∈ 𝑉 , a delivery location 𝑔 𝑗 ∈ 𝑉 and

a deadline 𝑑 𝑗 . To execute a task 𝑡 𝑗 , an agent has to move from its

current location via the pickup location 𝑠 𝑗 to the delivery location

𝑔 𝑗 . Each agent has a unit carrying capacity and can execute only

one task at a time. Each agent 𝑎𝑖 has a unique parking location

𝑝𝑖 ∈ 𝑉 where it initially stays at timestep 0 and it can exclusively

access at any time. After an agent completes all its tasks, it returns

to its parking location. We would like to assign tasks to agents and

plan paths for agents to execute them. Our objective is to maximize

the number of tasks completed by their deadlines. Between two

consecutive timesteps, an agent can execute either a move action

to go to an adjacent location or a wait action to stay at its current

location. Collisions may occur among agents at a location or along

an edge. To avoid collisions, the following constraints are imposed

in path planning: (i) two agents cannot occupy the same location at

the same timestep, and (ii) two agents cannot traverse the same edge

in opposite directions between the same two consecutive timesteps.

We refer to our problem as Multi-Agent Pickup and Delivery with

Task Deadlines (MAPD-TD).

A solution to the MAPD-TD problem specifies, for every agent

𝑎𝑖 ∈ A, (i) a sequence of tasks to be executed by 𝑎𝑖 , and (ii) a path

P𝑖 along which 𝑎𝑖 visits the pickup and delivery locations of its

assigned tasks in sequence and finally returns to its parking location.

The task sequences assigned to different agents are disjoint. The

paths of different agents do not collide with each other. Finding

the optimal MAPD-TD solution is computationally expensive since

it involves (a) searching all possible partitions of the tasks T into

task sequences among the agents A, and (b) planning the globally

optimal paths for the agents to execute their tasks. Hence, we focus

on developing heuristic solutions for MAPD-TD.

Existing studies onMAPD problems often focus on a class of solv-

able instances known as well-formed instances [5, 7]. The pickup,

delivery and parking locations are referred to as endpoints. AMAPD

instance is well-formed iff (1) the number of tasks is finite, (2) the

parking location of each agent is different from all task pickup and

delivery locations, and (3) there exists a path between any two

endpoints that traverses no other endpoints [5]. In such instances,

agents can always stay in their parking locations for long enough pe-

riods to avoid collisions with other agents. Well-formed instances

are typical for many real-world applications such as automated

warehouses. Thus, we also focus on well-formed instances.

Multi-Agent Pickup and Delivery with Task Deadlines WI-IAT’21, December 2021, Melbourne, Australia

3 ALGORITHMS FOR MAPD-TD

We propose a priority-based framework to perform task assign-

ment and path planning in an integrated manner. Each task assign-

ment decision is made based on the paths already planned for the

tasks previously assigned. Once a task gets assigned, the path for

executing the task is planned immediately. We start by defining

metrics to decide which task and which agent to choose for an

assignment.

3.1 Choosing An Agent

Suppose an agent 𝑎𝑖 has been assigned a sequence of tasks and

according to the planned path for 𝑎𝑖 , it takes 𝜏𝑖 timesteps to com-

plete these tasks. That is, denoting by 𝑢𝑖 the delivery location of

𝑎𝑖 ’s last assigned task, 𝑎𝑖 arrives at 𝑢𝑖 at timestep 𝜏𝑖 and then 𝑎𝑖
becomes available for executing new tasks. Given an unassigned

task 𝑡 𝑗 , we can compute an optimal path, using A
∗
search, for 𝑎𝑖 to

execute task 𝑡 𝑗 starting from timestep 𝜏𝑖 and finish it fastest. Let 𝑐𝑖, 𝑗
denote the timestep at which 𝑡 𝑗 is completed using the optimal path.

Then, the cost of the optimal path, i.e., the number of timesteps

required to execute 𝑡 𝑗 , is given by 𝑐𝑖, 𝑗 − 𝜏𝑖 .
Agents differ in the timesteps when they become available and

the locations where they become available. Thus, they can have

different costs to complete an unassigned task 𝑡 𝑗 . To improve the

resource efficiency, among all the agents that can complete task 𝑡 𝑗
by its deadline 𝑑 𝑗 , we choose the agent 𝑎𝑖∗ that has the lowest cost

to execute 𝑡 𝑗 :

𝑖∗ = argmin

𝑐𝑖,𝑗 ≤𝑑𝑖
(𝑐𝑖, 𝑗 − 𝜏𝑖) . (1)

3.2 Choosing A Task

To decide which task to assign next, we define a metric called the

flexibility. The flexibility 𝑓𝑗 of a task 𝑡 𝑗 is given by the task deadline

minus the earliest possible completion time among all the agents

to execute this task:

𝑓𝑗 = 𝑑 𝑗 − min

𝑎𝑖 ∈A
𝑐𝑖, 𝑗 . (2)

The flexibility metric measures the urgency of the task. A lower

flexibility value indicates that there is less time buffer and the task

is more urgent to execute. If a task has a negative flexibility, it

suggests that the task deadline cannot be met no matter which

agent is assigned to execute the task.

Among all the unassigned tasks with non-negative flexibility

values, we choose the task 𝑡 𝑗∗ with the lowest flexibility value to

assign next:

𝑗∗ = argmin

𝑓𝑗 ≥0
𝑓𝑗 . (3)

3.3 Prioritized Task Assignment

Algorithm 1 shows our priority-based framework for joint task

assignment and path planning, where P𝑖 represents the planned
path for each agent 𝑎𝑖 to execute its assigned tasks, and 𝜏𝑖 and

𝑢𝑖 represent the timestep and 𝑎𝑖 ’s location at the end of P𝑖 . The
high-level idea is as follows. Let T ′ denote the set of unassigned
tasks. Initially, T ′ = T (line 5). Tasks are considered and assigned

to agents one at a time. In each task assignment, the algorithm

first computes the completion time of executing each unassigned

Algorithm1: Integrated Task Assignment & Path Planning

1 for each agent 𝑎𝑖 ∈ A do

2 𝜏𝑖 ← 0; // the time when 𝑎𝑖 is available

3 𝑢𝑖 ← 𝑝𝑖 ; // the location of 𝑎𝑖 at time 𝜏𝑖

4 P𝑖 ← ∅; // the path for 𝑎𝑖

5 T ′ ← T ; // the set of unassigned tasks

6 while T ′ ≠ ∅ do
7 For every pair (𝑡 𝑗 , 𝑎𝑖) ∈ (T ′,A), plan the path and

compute the completion time 𝑐𝑖, 𝑗 of executing task 𝑡 𝑗

by agent 𝑎𝑖 ;

8 Compute the flexibility 𝑓𝑗 of each task 𝑡 𝑗 ∈ T ′
according to (2);

9 Remove from T ′ all tasks 𝑡 𝑗 where 𝑓𝑗 < 0;

10 Select task 𝑡 𝑗∗ satisfying (3); remove it from T ′;
11 Assign 𝑡 𝑗∗ to agent 𝑎𝑖∗ satisfying (1);

12 Dummy-Path-Planning(𝑡 𝑗∗ , 𝑎𝑖∗) (Algorithm 3);

13 Append the path for 𝑎𝑖∗ executing 𝑡 𝑗∗ to P𝑖∗ ;
14 𝜏𝑖∗ ← 𝑐𝑖∗, 𝑗∗ ; 𝑢𝑖∗ ← 𝑔 𝑗∗ ;

15 for each agent 𝑎𝑖 ∈ A do

16 Plan a path for 𝑎𝑖 to move from 𝑢𝑖 to the parking

location 𝑝𝑖 and append the path to P𝑖 ;

task by each agent (line 7) and then derives the flexibility of each

task (line 8). After that, the algorithm chooses from T ′ the task
𝑡 𝑗∗ that satisfies (3) (lines 9-10) and assigns 𝑡 𝑗∗ to the agent 𝑎𝑖∗

that satisfies (1) (line 11). Finally, the algorithm plans some dummy

paths if needed (line 12, to be discussed in Section 3.5) and append

the path for 𝑎𝑖∗ executing 𝑡 𝑗∗ to 𝑎𝑖∗ ’s path P𝑖∗ (lines 13-14). After
the task assignment process is completed, the algorithm plans a

path for each agent to return to its parking location (lines 15-16).

In Algorithm 1, line 7 involves planning a path for an agent to

execute a task. We make use of the multi-label A
∗
algorithm [2] to

plan an optimal path for the agent to move from its current location

via the task pickup location to the task delivery location. The A
∗

search is conducted in the space of location-timestamp pairs taking

into account the node and edge access constraints imposed by the

paths {P𝑖 }𝑎𝑖 ∈A already planned for the previously assigned tasks.

3.4 Bounding and Pruning

Algorithm 1 computes an optimal path using A
∗
search to derive

the completion time 𝑐𝑖, 𝑗 for each pair of agents 𝑎𝑖 and unassigned

task 𝑡 𝑗 (line 7). In a naive implementation of Algorithm 1, the total

number of A
∗
calls is O

(
𝑀𝑁 2

)
(where𝑀 and 𝑁 are the numbers of

agents and tasks respectively). To improve computational efficiency,

we propose several bounding and pruning techniques to help dis-

card agents and tasks that are unlikely to be chosen for assignment

before A
∗
searches are called or run to completion. Algorithm 2

summarizes the improved process for identifying 𝑡 𝑗∗ in each task

assignment (in place of lines 7-10 of Algorithm 1).

Truncated A
∗
Search. For each unassigned task 𝑡 𝑗 , we maintain

its earliest completion time 𝑏 𝑗 among all the agents that have been

examined. Initially, 𝑏 𝑗 is set to 𝑑 𝑗 + 1 (line 4, Algorithm 2), which

implies that 𝑡 𝑗 cannot be completed by its deadline 𝑑 𝑗 if no agent is

WI-IAT’21, December 2021, Melbourne, Australia Xiaohu Wu, Yihao Liu, Xueyan Tang, Wentong Cai, Funing Bai, Gilbert Khonstantine, and Guopeng Zhao

Algorithm 2: Bounding and Pruning

1 𝐵 ← +∞; // minimum flexibility among tasks

2 Sort all unassigned tasks 𝑡 𝑗 ∈ T ′ in increasing order of 𝑓𝑗

from the previous task assignment;

3 for each task 𝑡 𝑗 ∈ T ′ do
4 𝑏 𝑗 ← 𝑑 𝑗 + 1; // earliest completion time of 𝑡 𝑗

5 Sort all agents 𝑎𝑖 ∈ A in increasing order of 𝑐𝑖, 𝑗 from

the previous task assignment (or

𝜏𝑖 + 𝑑 (𝑢𝑖 , 𝑠 𝑗) + 𝑑 (𝑠 𝑗 , 𝑔 𝑗) if 𝑐𝑖, 𝑗 = ⊥ or 𝑎𝑖 was selected

for the previous task assignment);

6 if max𝑎𝑖 ∈A 𝜏𝑖 +min𝑎𝑖 ∈A 𝑑∗ (𝑢𝑖 , 𝑠 𝑗) + 𝑑∗ (𝑠 𝑗 , 𝑔 𝑗)
≥ 𝑑 𝑗 − 𝐵 then

7 for each agent 𝑎𝑖 ∈ A do

8 if the path giving 𝑐𝑖, 𝑗 in the previous task
assignment collides with the path planned for
executing the task selected in the previous task
assignment or 𝑐𝑖, 𝑗 > 𝑑 𝑗 − 𝐵 then

9 𝑐𝑖, 𝑗 ← Truncated-A
∗ (𝑢𝑖 , 𝜏𝑖 , 𝑡 𝑗 , 𝑏 𝑗);

10 if 𝑐𝑖, 𝑗 ≠ ⊥ then

11 𝑏 𝑗 ← 𝑐𝑖, 𝑗 ;

12 if 𝑐𝑖, 𝑗 ≤ 𝑑 𝑗 − 𝐵 then

13 break;

14 𝑓𝑗 ← 𝑑 𝑗 − 𝑏 𝑗 ; // flexibility of task 𝑡 𝑗

15 if 𝑓𝑗 < 0 then

16 remove 𝑡 𝑗 from T ′;
17 else

18 if 𝑓𝑗 < 𝐵 then

19 𝐵 ← 𝑓𝑗 ;

20 𝑗∗ ← 𝑗 ;

going to execute it. After computing the completion time 𝑐𝑖, 𝑗 of 𝑡 𝑗
by an agent 𝑎𝑖 , we update 𝑏 𝑗 by setting 𝑏 𝑗 = 𝑐𝑖, 𝑗 if 𝑐𝑖, 𝑗 < 𝑏 𝑗 (line

11).

The computation of each 𝑐𝑖, 𝑗 involves an A
∗
search. The A

∗
algo-

rithm maintains an OPEN set recording the states to be searched. A

score 𝑓 (𝑛) is associated with each state 𝑛 in OPEN, indicating the

estimated timestep when task 𝑡 𝑗 can be completed if the path goes

through 𝑛. In each iteration, a state 𝑛∗ with the least score 𝑓 (𝑛∗) is
chosen and removed from OPEN. Then, this state is expanded by

adding all its successor states to OPEN.

Normally, the A
∗
search algorithm ends when a goal state is

chosen from OPEN or the OPEN set is exhausted. To compute the

flexibility 𝑓𝑗 of a task 𝑡 𝑗 , we are interested in only the earliest com-

pletion time of 𝑡 𝑗 among all the agents. Thus, 𝑏 𝑗 can be added as

an input to the A
∗
algorithm so that A

∗
can stop earlier, avoiding

exploring unnecessary states. We adapt the A
∗
algorithm by also

terminating the search when the state 𝑛∗ chosen from OPEN satis-

fies 𝑓 (𝑛∗) > 𝑏 𝑗 . When a state 𝑛∗ satisfying 𝑓 (𝑛∗) > 𝑏 𝑗 is chosen, it

implies that all the states satisfying 𝑓 (𝑛) ≤ 𝑏 𝑗 have been examined.

If no goal state was found, the agent cannot complete the task by

time 𝑏 𝑗 and it is safe to stop searching any further states (in this

case, we let the A
∗
algorithm return a special value ⊥). The adapted

A
∗
algorithm is referred to as Truncated-A

∗ (𝑢𝑖 , 𝜏𝑖 , 𝑡 𝑗 , 𝑏 𝑗), where
𝑢𝑖 and 𝜏𝑖 are the location and timestep when agent 𝑎𝑖 becomes

available, 𝑡 𝑗 is the unassigned task to execute, and 𝑏 𝑗 is the upper

bound on the completion time. If the A
∗
algorithm ends with a goal

state found, it implies that 𝑡 𝑗 has an earlier completion time than

𝑏 𝑗 by agent 𝑎𝑖 . Then, we set 𝑏 𝑗 = 𝑐𝑖, 𝑗 and use this new bound in

the A
∗
call for the next agent (lines 9–11).

Note that in our solution, tasks are assigned one at a time. After a

task is assigned, a path to execute the task is planned and appended

to the designated agent, while the paths of all the other agents

would not change. Thus, we do not expect significant changes

to the node and edge access constraints for planning new paths

between successive task assignments. The completion times of a

task 𝑡 𝑗 by different agents in the previous task assignment can be

good references for the next task assignment if 𝑡 𝑗 was not selected

for assignment. To maximize the effectiveness of the bound 𝑏 𝑗 , we

sort all the agents by their completion times for 𝑡 𝑗 derived in the

previous task assignment (line 5). The agents are examined in the

increasing order of these completion times. In this way, agents likely

to achieve earlier completion times in the next task assignment

are examined first to produce a tighter bound 𝑏 𝑗 . For the agents

where the A
∗
algorithm ended due to 𝑓 (𝑛∗) > 𝑏 𝑗 in the previous

task assignment, we do not have their completion times. In this

case, we use 𝜏𝑖 + 𝑑 (𝑢𝑖 , 𝑠 𝑗) + 𝑑 (𝑠 𝑗 , 𝑔 𝑗) as an alternative reference for

the sorting purpose, where 𝑢𝑖 and 𝜏𝑖 are the location and timestep

when agent 𝑎𝑖 becomes available, and 𝑑 (𝑥,𝑦) is the shortest-path
distance between two locations 𝑥 and 𝑦. Note that in the first task

assignment where 𝜏𝑖 = 0 for all agents, the agents are simply sorted

according to 𝑑 (𝑝𝑖 , 𝑠 𝑗) +𝑑 (𝑠 𝑗 , 𝑔 𝑗), where 𝑝𝑖 is the parking location of

agent 𝑎𝑖 . The shortest-path distances between all pairs of endpoints

(pickup, delivery and parking locations) can be precomputed before

the task assignment process.

Pruning Across Tasks. Recall that in each task assignment, we

would like to find the task with the least flexibility. Thus, we also

apply a pruning technique across tasks. Suppose the flexibility 𝑓𝑘
of a task 𝑡𝑘 has been computed. When examining another task 𝑡 𝑗 ,

if we find that a particular agent 𝑎𝑖 can achieve a completion time

𝑐𝑖, 𝑗 satisfying 𝑑 𝑗 − 𝑐𝑖, 𝑗 > 𝑓𝑘 , it implies that the flexibility 𝑓𝑗 of task

𝑡 𝑗 satisfies 𝑓𝑗 = 𝑑 𝑗 −min𝑎𝑖 ∈A 𝑐𝑖, 𝑗 ≥ 𝑑 𝑗 − 𝑐𝑖, 𝑗 > 𝑓𝑘 . Thus, 𝑡 𝑗 cannot

be the task with the least flexibility. Hence, we can skip the path

computations of the remaining agents for task 𝑡 𝑗 . To implement this

idea, we maintain the least flexibility of all the tasks that have been

examined, denoted by 𝐵 (lines 1, 18–19). For each unassigned task

𝑡 𝑗 , we stop examining the agents once an agent is found to achieve

a completion time earlier than 𝑑 𝑗 − 𝐵 (lines 12–13). To maximize

the effectiveness of the bound 𝐵, we also sort all the unassigned

tasks by their flexibility values in the previous task assignment

(line 2). The tasks are examined in the increasing order of these

flexibility values. As a result, tasks likely to have lower flexibility

values are examined first to produce a tighter bound 𝐵. In the first

task assignment, the tasks can be arranged in any order.

Even with the above bound 𝐵, for each unassigned task, we still

need to compute the completion time by at least one agent. To

further enhance computational efficiency, we establish an upper

bound on the completion time of each unassigned task without any

Multi-Agent Pickup and Delivery with Task Deadlines WI-IAT’21, December 2021, Melbourne, Australia

A
∗
call. Note that 𝜏𝑖 is the timestep when agent 𝑎𝑖 becomes available.

If we do not assign any new task to each agent when it becomes

available, then by timemax𝑎𝑖 ∈A 𝜏𝑖 , all the agentswould be available.

At this time, if we would like to assign a task 𝑡 𝑗 to an agent and

complete the task fastest, we should assign 𝑡 𝑗 to the agent with the

shortest distance of 𝑑∗ (𝑢𝑖 , 𝑠 𝑗) + 𝑑∗ (𝑠 𝑗 , 𝑔 𝑗), where 𝑢𝑖 is the location
where agent 𝑎𝑖 becomes available, and 𝑑∗ (𝑥,𝑦) is the shortest-path
distance between two endpoints 𝑥 and 𝑦 without traversing any

other endpoints (recall that in well-formed instances, there exists

at least one such path). Thus, max𝑎𝑖 ∈A 𝜏𝑖 + min𝑎𝑖 ∈A 𝑑∗ (𝑢𝑖 , 𝑠 𝑗) +
𝑑∗ (𝑠 𝑗 , 𝑔 𝑗) gives an upper bound on the completion time of task 𝑡 𝑗 .

If this upper bound is earlier than 𝑑 𝑗 −𝐵, we can safely discard task

𝑡 𝑗 from consideration without evaluating its completion time by

any agent (line 6).

Reusing Task Completion Times. As mentioned, the changes

to the node and edge access constraints for planning new paths

between successive task assignments are usually minor. Thus, we

can also skip recomputing the paths for unassigned tasks by reusing

the computed paths from the previous task assignment. Specifically,

if the path computed for an agent 𝑎𝑖 to execute an unassigned task

𝑡 𝑗 does not collide with the path to execute the task selected in the

previous task assignment, the path and hence the completion time

𝑐𝑖, 𝑗 for 𝑎𝑖 to execute 𝑡 𝑗 remain valid in the next task assignment.

Thus, 𝑐𝑖, 𝑗 from the previous task assignment can serve as an upper

bound on the completion time of 𝑡 𝑗 in the next task assignment.

Similar to “Pruning Across Tasks” above, if 𝑐𝑖, 𝑗 from the previous

task assignment is earlier than 𝑑 𝑗 −𝐵, there is no need to recompute

the completion time for 𝑎𝑖 to execute 𝑡 𝑗 . Therefore, we recompute

the completion time for 𝑎𝑖 to execute 𝑡 𝑗 only when the path giving

𝑐𝑖, 𝑗 in the previous task assignment collides with the path to execute

the task selected in the previous task assignment or 𝑐𝑖, 𝑗 > 𝑑 𝑗 − 𝐵
(line 8).

3.5 Collision-free Path Planning

Now we detail line 12 of Algorithm 1. Collisions may have to

arise if the path planning of each newly assigned task is simply

based on the access constraints formed by the paths already planned

for the previously assigned tasks and no additional constraints are

taken into account.

Example. Figure 1 (left) shows a graphwith some locationsmarked.

Consider the following case in Figure 1 (middle):

• In its planned path, agent 𝑎1 arrives at location 𝑣4 at timestep

4 upon completing its last assigned task. If no additional

constraints are imposed, this location 𝑣4 is forbidden to be

accessed by other agents only at timestep 4.

• Subsequently, agents 𝑎2 and 𝑎3 have their new paths planned.

In their planned paths, 𝑎2 starts to move from timestep 2

along the path 𝑣1 → 𝑣2 → 𝑣3 → 𝑣4, and 𝑎3 starts to move

from timestep 3 along the path 𝑣7 → 𝑣6 → 𝑣5.

In this case, between timesteps 4 and 5, 𝑎1 cannot move to 𝑣3 and

𝑣5 due to collisions with the paths of 𝑎2 and 𝑎3 (𝑎2 is moving from

𝑣3 to 𝑣4, and 𝑎3 is moving from 𝑣6 to 𝑣5). In addition, if 𝑎1 continues

to stay at 𝑣4 at timestep 5, a collision occurs with 𝑎2. As a result, a

collision is inevitable.

To avoid the collision above, some additional access permissions

must be granted to 𝑎1 after it completes the last assigned task,

which correspond to additional access constraints for other agents.

One possible method is to grant 𝑎1 access to location 𝑣4 infinitely

after timestep 4, before a new path is planned for 𝑎1. This, however,

would imply that no agent can move from the left half of the graph

to the right half, which can significantly degrade the efficiency of

following task assignments and execution.

The state-of-the-art method reserves a dummy path for every

agent 𝑎𝑖 ∈ A whenever 𝑎𝑖 gets assigned a new task [5]. Suppose an

agent 𝑎𝑖 gets assigned a new task 𝑡 𝑗 and will arrive at 𝑡 𝑗 ’s delivery

location 𝑔 𝑗 at timestep 𝑐𝑖, 𝑗 according to the planned path. A dummy
path is defined as a path for 𝑎𝑖 to move from 𝑔 𝑗 to its parking

location 𝑝𝑖 starting from timestep 𝑐𝑖, 𝑗 , denoted by P(𝑐𝑖, 𝑗 , 𝑔 𝑗 , 𝑝𝑖).
In the example of Figure 1, after planning the path for 𝑎1 to

arrive at 𝑣4 at timestep 4, we can immediately plan a dummy path

𝑣4 → 𝑣5 → 𝑣6 → 𝑣8 → 𝑝1 for 𝑎1 to return to its parking location 𝑝1
starting from timestep 4, illustrated by the orange line in Figure 1

(right). We reserve this dummy path for 𝑎1 until 𝑎1 is assigned

the next task, and impose this dummy path as access constraints

for other agents such as 𝑎2 and 𝑎3. Then, in the subsequent path

planning, the movement of 𝑎3 from 𝑣6 to 𝑣5 between timesteps 4

and 5 will not be allowed due to the collision with 𝑎1’s dummy path.

As a result, 𝑎3 can only access 𝑣6 after 𝑎1’s dummy path.

If every agent is reserved a dummy path after completing every

task, it can bring about plenty of access constraints on the nodes

and edges, degrading the performance of path planning for new

task execution. In the above example, collisions occur because (i)

𝑎1 cannot visit all its adjacent nodes (𝑣3 and 𝑣5) at a timestep after

reaching location 𝑣4; and (ii) there exists another agent 𝑎2 to visit 𝑣4
at that timestep. In the following, we refine the dummy pathmethod

by identifying the conditions under which reserving a dummy path

is necessary.

A Refined Approach to Reserving Dummy Paths. Suppose

that a task 𝑡 𝑗∗ is being considered for assignment to agent 𝑎𝑖∗ (line

12, Algorithm 1). Let P𝑖∗, 𝑗∗ denote the path planned for 𝑎𝑖∗ to exe-

cute 𝑡 𝑗∗ . Let 𝑐𝑖∗, 𝑗∗ denote the timestep at which 𝑎𝑖∗ arrives at the

delivery location 𝑔 𝑗∗ of 𝑡 𝑗∗ . We identify some conflict-of-interest

(COI) conditions between 𝑎𝑖∗ and other agents. Recall that for each

agent 𝑎𝑖 , 𝑢𝑖 records the delivery location of 𝑎𝑖 ’s last assigned task

and 𝜏𝑖 records the timestep when 𝑎𝑖 arrives at 𝑢𝑖 .

Definition 1. While assigning 𝑡 𝑗∗ to 𝑎𝑖∗ , a conflict-of-interest
(COI) condition arises with another agent 𝑎𝑖 if either of the following
holds:

(a) The planned path of 𝑎𝑖 will access 𝑔 𝑗∗ at a timestep later than
𝑐𝑖∗, 𝑗∗ .

(b) The path P𝑖∗, 𝑗∗ will access the last delivery location 𝑢𝑖 of 𝑎𝑖 at
a timestep later than 𝜏𝑖 .

When there is a COI condition, a dummy path is needed so that

the assignment of 𝑡 𝑗∗ will not lead to collisions. Let P𝑑
𝑖
denote the

dummy path reserved for each agent 𝑎𝑖 ∈ A. Initially, the dummy

paths of all agents are empty. Algorithm 3 shows how dummy paths

are generated or updated to cope with a COI condition:

• Under a type-(a) COI condition, after 𝑡 𝑗∗ is assigned, 𝑎𝑖∗ can

only stay at 𝑔 𝑗∗ for a limited number of timesteps. We gen-

erate a dummy path P(𝑐𝑖∗, 𝑗∗ , 𝑔 𝑗∗ , 𝑝𝑖∗) for 𝑎𝑖∗ to move from

𝑔 𝑗∗ to its parking location 𝑝𝑖∗ starting from timestep 𝑐𝑖∗, 𝑗∗ .

WI-IAT’21, December 2021, Melbourne, Australia Xiaohu Wu, Yihao Liu, Xueyan Tang, Wentong Cai, Funing Bai, Gilbert Khonstantine, and Guopeng Zhao

Figure 1: Necessity of dummy path.

Algorithm 3: Dummy-Path-Planning(𝑡 𝑗∗ , 𝑎𝑖∗)

1 Let P𝑖∗, 𝑗∗ be the path planned for 𝑎𝑖∗ to execute 𝑡 𝑗∗ ;

2 P𝑑
𝑖∗ ← ∅;

3 if a type-(a) COI condition holds then
4 P𝑑

𝑖∗ ← Plan a dummy path P(𝑐𝑖∗, 𝑗∗ , 𝑔 𝑗∗ , 𝑝𝑖∗);
5 foreach type-(b) COI condition holds do
6 if P𝑑

𝑖
= ∅ then

7 P𝑑
𝑖
← Plan a dummy path P(𝜏𝑖 , 𝑢𝑖 , 𝑝𝑖);

This new path overwrites the dummy path reserved for 𝑎𝑖∗

before the assignment of 𝑡 𝑗∗ if any (lines 2–4, Algorithm 3).

• Under a type-(b) COI condition, after 𝑡 𝑗∗ is assigned, 𝑎𝑖 can

only stay at its last delivery location 𝑢𝑖 for a limited number

of timesteps. If no dummy path is reserved for 𝑎𝑖 yet, we

generate a dummy pathP(𝜏𝑖 , 𝑢𝑖 , 𝑝𝑖) for 𝑎𝑖 to move from𝑢𝑖 to

its parking location 𝑝𝑖 starting from timestep 𝜏𝑖 . There may

exist multiple type-(b) COI conditions for different agents 𝑎𝑖
(lines 5–7, Algorithm 3).

Our proposed method reserves a dummy path for an agent only

when a COI condition holds, and thus can greatly reduce the number

of dummy paths needed.

Constraints and Path Planning. In general, when planning a

path for an agent 𝑎𝑖 , we need to respect the planned paths and the

dummypaths (if any) of all the agents other than𝑎𝑖 , i.e.,

{
P𝑘 ∪ P𝑑𝑘

}
𝑎𝑘≠𝑎𝑖

.

In line 4 of Algorithm 3, the path planning respects

{
P𝑘 ∪ P𝑑𝑘

}
𝑎𝑘≠𝑎𝑖∗

.

In line 7 of Algorithm 3, the path planning respects

{
P𝑘 ∪ P𝑑𝑘

}
𝑎𝑘≠𝑎𝑖

.

In case any planning of the dummy path fails in Algorithm 3, we

skip the agent 𝑎𝑖∗ , revert any changes made in the algorithm, and

try assigning task 𝑡 𝑗∗ to the next agent satisfying (1). This continues

until the path planning in Algorithm 3 succeeds. If all the agents

are exhausted for 𝑡 𝑗∗ , we remove 𝑡 𝑗∗ from T ′.

Proposition 1. The proposedmethod for reserving dummy paths
guarantees that the planned paths P1, · · · , P𝑀 of all agents are
collision-free when Algorithm 1 ends.

Proof. While assigning 𝑡 𝑗∗ to 𝑎𝑖∗ , the path P𝑖∗, 𝑗∗ is planned
based on the current constraints of

{
P𝑘 ∪ P𝑑𝑘

}
𝑎𝑘≠𝑎𝑖∗

. Thus, P𝑖∗, 𝑗∗
will not collide with the paths of other agents planned before 𝑡 𝑗∗ .

After the assignment of 𝑡 𝑗∗ , when any other agent 𝑎𝑖⋄ gets assigned

a new task 𝑡 𝑗⋄ , the path P𝑖⋄, 𝑗⋄ for 𝑡 𝑗⋄ is planned based on the con-

straints of

{
P𝑘 ∪ P𝑑𝑘

}
𝑎𝑘≠𝑎𝑖⋄

at that moment. Thus, collisions will

not occur between P𝑖⋄, 𝑗⋄ and P𝑖∗, 𝑗∗ . Therefore, the path P𝑖∗, 𝑗∗ will
not collide with any other agent, no matter whether the latter is

executing a task assigned before or after 𝑡 𝑗∗ .

If 𝑡 𝑗∗ is the last task of 𝑎𝑖∗ , we need to see whether there exists a

collision-free path for 𝑎𝑖∗ to move from 𝑔 𝑗∗ to the parking location

𝑝𝑖∗ . If a type-(a) COI condition holds when assigning 𝑡 𝑗∗ to 𝑎𝑖∗ , by

Algorithm 3, a dummy path has been planned for 𝑎𝑖∗ to move to 𝑝𝑖∗ .

Otherwise, if no other agent will access the delivery location 𝑔 𝑗∗ of

𝑡 𝑗∗ after timestep 𝑐𝑖∗, 𝑗∗ , 𝑎𝑖∗ can stay at 𝑔 𝑗∗ infinitely from timestep

𝑐𝑖∗, 𝑗∗ onward. Thus, a collision-free path from 𝑔 𝑗∗ to 𝑝𝑖∗ can always

be found, e.g., 𝑎𝑖∗ can wait at 𝑔 𝑗∗ until the other agents complete all

their tasks and then 𝑎𝑖∗ can find an endpoint-free path to 𝑝𝑖∗ due

to well-formed instances. □

4 EXPERIMENTAL RESULTS

To experimentally evaluate the proposed framework, we make

use of two simulated warehouse environments of different sizes

[5] as shown in Figure 2. We assume there are 𝑀 agents and 𝑁

tasks. The parking locations of agents are randomly chosen from

the orange cells. The pickup and delivery locations of each task are

randomly chosen from the blue cells.

To generate task deadlines, we run a simple algorithm to con-

struct𝑀 hypothetical streams of tasks. Each task stream is headed

by the parking location of one agent. We scan all the tasks and

append each task to the stream with the least load, where the load

of a hypothetical task stream is defined as the time required by an

agent to complete all the tasks in sequence assuming that there is

no conflict in the environment. That is, if a task stream is headed by

a parking location 𝑝𝑖 and has a sequence of tasks (𝑠1, 𝑔1), (𝑠2, 𝑔2),
. . . , (𝑠𝑚, 𝑔𝑚), its load is given by 𝑑 (𝑝𝑖 , 𝑠1) + 𝑑 (𝑠1, 𝑔1) + 𝑑 (𝑔1, 𝑠2) +
𝑑 (𝑠2, 𝑔2)+· · ·+𝑑 (𝑔𝑚−1, 𝑠𝑚)+𝑑 (𝑠𝑚, 𝑔𝑚), where𝑑 (𝑥,𝑦) is the shortest-
path distance between two locations 𝑥 and 𝑦. Then, we set the

deadline of each task (𝑠 𝑗 , 𝑔 𝑗) in the stream to (1 + 𝜙) · (𝑑 (𝑝𝑖 , 𝑠1) +
𝑑 (𝑠1, 𝑔1) +𝑑 (𝑔1, 𝑠2) +𝑑 (𝑠2, 𝑔2) + · · · +𝑑 (𝑔 𝑗−1, 𝑠 𝑗) +𝑑 (𝑠 𝑗 , 𝑔 𝑗)), where
𝜙 is a parameter for controlling the tightness of the deadline setting.

If 𝜙 = 0, it implies that 𝑎𝑖 can just complete all the tasks in the

stream by their deadlines in the ideal case that there is no conflict

with any other agent. The larger the value of 𝜙 , the looser the task

deadlines. Note that the construction of hypothetical task streams

is for the purpose of setting task deadlines only. Agent 𝑎𝑖 is not

necessarily assigned the tasks in the stream headed by 𝑝𝑖 by our

assignment and planning algorithms. The above method for setting

Multi-Agent Pickup and Delivery with Task Deadlines WI-IAT’21, December 2021, Melbourne, Australia

Figure 2: Two simulated warehouses of 4-neighbor grids [5].

Black cells are blocked, blue cells represent potential pickup

or delivery locations of tasks, and orange cells represent po-

tential parking locations of agents.

Table 1: Average success rate

small warehouse

𝜙
𝑁

𝑀
10 20 30 40 50

0.0 10 ×𝑀 0.9360 0.9230 0.8573 0.8190 0.7978

0.1 10 ×𝑀 0.9660 0.9635 0.9560 0.9342 0.8964

0.25 10 ×𝑀 0.9950 0.9920 0.9950 0.9900 0.9880

large warehouse

𝜙
𝑁

𝑀
60 90 120 150 180

0.0 10 ×𝑀 0.8778 0.8172 0.7737 0.7179 0.6836

0.1 10 ×𝑀 0.9708 0.9198 0.8576 0.8141 0.7578

0.25 10 ×𝑀 0.9977 0.9943 0.9842 0.9621 0.8948

task deadlines allows us to tune the parameter 𝜙 and construct

problem instances in which it is possible to meet nearly all the task

deadlines, which we believe is of most interest in practice.

We run extensive experiments with different settings. We set

the number of agents𝑀 = 10, 20, 30, 40, 50 for the small warehouse

and set𝑀 = 60, 90, 120, 150, 180 for the large warehouse. We set the

number of tasks 𝑁 = 10×𝑀 and 𝜙 = 0, 0.1, 0.25. For each setting of

(𝑀, 𝑁,𝜙), we randomly generate 10 problem instances and present

the average performance over these instances. We implement the

algorithms in C++ and run the experiments on a machine with Intel

Core i9-9820X 3.30GHz CPU and 64GB memory.

Success Rate. Table 1 shows the average success rate of the 10

problem instances for each (𝑀, 𝑁,𝜙) setting by our algorithms,

where the success rate is defined as the ratio of the number of

tasks completed by their deadlines to the total number of tasks. As

expected, the tightness of the deadline setting is a main factor that

affects the success rate. The success rate achieved by our algorithms

increases with the 𝜙 value. It can also be seen that the success rate

decreases with increasing number of agents𝑀 . This is because a

larger number of agents give rise to potentially more conflicts in a

given environment, making it harder to meet task deadlines. For

comparison purposes, Table 2 shows the average success rate of a

baseline algorithm that, for each task to assign, simply chooses the

agent giving rise to the task flexibility (2) (i.e., completing the task

earliest) rather than the agent with the lowest cost to execute the

Table 2: Average success rate for the baseline algorithm

small warehouse

𝜙
𝑁

𝑀
10 20 30 40 50

0.0 10 ×𝑀 0.8670 0.8090 0.7760 0.7378 0.7216

0.1 10 ×𝑀 0.9380 0.8920 0.8580 0.8198 0.7906

0.25 10 ×𝑀 0.9890 0.9810 0.9630 0.9402 0.9116

large warehouse

𝜙
𝑁

𝑀
60 90 120 150 180

0.0 10 ×𝑀 0.7867 0.7376 0.7022 0.6645 0.6271

0.1 10 ×𝑀 0.8742 0.8124 0.7725 0.7261 0.6886

0.25 10 ×𝑀 0.9792 0.9377 0.8933 0.8369 0.7918

Table 3: Average running time in seconds

small warehouse

𝜙
𝑁

𝑀
10 20 30 40 50

0.0 10 ×𝑀 0.2050 0.9618 1.936 4.053 7.628

0.1 10 ×𝑀 0.2160 1.207 2.722 5.836 10.25

0.25 10 ×𝑀 0.2492 1.315 3.184 7.530 14.24

large warehouse

𝜙
𝑁

𝑀
60 90 120 150 180

0.0 10 ×𝑀 15.50 42.68 104.2 221.3 398.1

0.1 10 ×𝑀 20.82 53.65 117.0 238.5 424.7

0.25 10 ×𝑀 20.00 69.89 180.1 374.0 634.1

Table 4: Speedup of bounding and pruning for small ware-

house

𝜙
𝑁

𝑀
10 20 30 40 50

0.0 10 ×𝑀 33.90 79.19 150.6 202.8 235.5

0.1 10 ×𝑀 35.96 74.70 138.6 170.4 224.5

0.25 10 ×𝑀 36.57 93.07 181.8 214.0 272.0

task (as given by (1)). It can be seen that choosing the agent with

the lowest cost can improve the success rate by up to 10%.

Running Time. Table 3 shows the average running time of our

algorithms for each (𝑀, 𝑁,𝜙) setting. As can be seen, the running

time increases with the number of agents𝑀 , since path planning

requires more effort to resolve conflicts among agents. Our algo-

rithms can handle the largest instances tested (180 agents and 1800

tasks for the large warehouse) in about 10 minutes. Next, we study

the efficiency improvements due to the bounding and pruning tech-

niques and the refined approach for dummy path reservation.

Bounding and Pruning. We also run our framework without

applying the bounding and pruning techniques of Algorithm 2.

Table 4 shows the average speedup due to bounding and prun-

ing for each (𝑀, 𝑁,𝜙) setting for the small warehouse. As can be

seen, the proposed bounding and pruning techniques can speed

WI-IAT’21, December 2021, Melbourne, Australia Xiaohu Wu, Yihao Liu, Xueyan Tang, Wentong Cai, Funing Bai, Gilbert Khonstantine, and Guopeng Zhao

Table 5: Reserve ratio of refined dummy path reservation

small warehouse

𝜙
𝑁

𝑀
10 20 30 40 50

0.0 10 ×𝑀 0.1452 0.2156 0.2435 0.3334 0.3998

0.1 10 ×𝑀 0.1513 0.2574 0.3052 0.3640 0.4289

0.25 10 ×𝑀 0.2161 0.3120 0.3679 0.4468 0.4990

large warehouse

𝜙
𝑁

𝑀
60 90 120 150 180

0.0 10 ×𝑀 0.2815 0.3915 0.5129 0.5907 0.6486

0.1 10 ×𝑀 0.3313 0.4214 0.5148 0.6050 0.6645

0.25 10 ×𝑀 0.3961 0.4749 0.5697 0.6330 0.7088

Table 6: Speedup of refined dummy path reservation

small warehouse

𝜙
𝑁

𝑀
10 20 30 40 50

0.0 10 ×𝑀 1.490 1.490 1.664 1.605 1.446

0.1 10 ×𝑀 1.475 1.328 1.539 1.363 1.342

0.25 10 ×𝑀 1.387 1.218 1.307 1.168 1.062

large warehouse

𝜙
𝑁

𝑀
60 90 120 150 180

0.0 10 ×𝑀 1.557 1.495 1.426 1.274 1.242

0.1 10 ×𝑀 1.394 1.361 1.338 1.244 1.176

0.25 10 ×𝑀 1.303 1.141 1.061 1.064 0.9919

up task assignment and planning by one to two orders of magni-

tude. The speedup generally increases with the number of agents.

The efficiency improvement is even more significant for the large

warehouse in that we are not able to complete the runs for most

(𝑀, 𝑁,𝜙) settings without applying bounding and pruning (and

hence do not report the speedup here).

Refined Dummy Path Reservation. Recall that in the original

dummy path method, one dummy path is reserved for every task

planned. Table 5 shows the average ratio between the number of

dummy paths reserved by our refined approach and the number

of tasks planned. It can be seen that our refined approach can save

a substantial amount of dummy path computation. The saving is

larger when the number of agents is smaller since it is less likely for

agents to access the delivery locations of tasks executed by other

agents. To study the efficiency improvement brought by the refined

approach to reserving dummy paths, we also run our framework

by simply reserving a dummy path for every task planned. Table 6

shows the average speedup due to our refined approach. As can be

seen, our refined approach can reduce the running time remarkably,

which demonstrates the effectiveness of reserving dummy paths

selectively.

5 CONCLUSIONS

We have adopted an integrated approach to develop a joint task

assignment and path planning framework for the MAPD-TD prob-

lem. We have also proposed a number of techniques to enhance

the computational efficiency of the framework. In this paper, we

have focused on the offline MAPD-TD problem. One direction for

future work is to extend the framework of this paper to address the

online MAPD-TD problem. Our framework can also be extended to

optimize other metrics such as makespan and sum-of-costs.

6 ACKNOWLEDGMENTS

This study is supported under the RIE2020 Industry Alignment

Fund – Industry Collaboration Projects (IAF-ICP) Funding Initiative,

as well as cash and in-kind contribution from Singapore Telecommu-

nications Limited (Singtel), through Singtel Cognitive and Artificial

Intelligence Lab for Enterprises (SCALE@NTU).

REFERENCES

[1] Alessandro Farinelli, Antonello Contini, and Davide Zorzi. 2020. Decentral-

ized Task Assignment for Multi-item Pickup and Delivery in Logistic Scenarios.

In Proceedings of the 19th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS). 1843–1845.

[2] Florian Grenouilleau, Willem-Jan van Hoeve, and John N. Hooker. 2019. A

Multi-Label A
∗
Algorithm for Multi-Agent Pathfinding. In Proceedings of the

29th International Conference on Automated Planning and Scheduling (ICAPS).
181–185.

[3] David Karger, Cliff Stein, and Joel Wein. 2010. Scheduling Algorithms. In Algo-
rithms and theory of computation handbook: special topics and techniques. Chap-
man & Hall/CRC, 20:1 – 20:34.

[4] Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W. Durham, T. K. Satish Kumar,

and Sven Koenig. 2020. Lifelong Multi-Agent Path Finding in Large-Scale Ware-

houses. In Proceedings of the 19th International Conference on Autonomous Agents
and MultiAgent Systems (AAMAS). 1898–1900.

[5] Minghua Liu, Hang Ma, Jiaoyang Li, and Sven Koenig. 2019. Task and Path Plan-

ning for Multi-Agent Pickup and Delivery. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS). 1152–1160.

[6] Hang Ma, Wolfgang Hönig, T. K. Satish Kumar, Nora Ayanian, and Sven Koenig.

2019. Lifelong Path Planning with Kinematic Constraints for Multi-Agent Pickup

and Delivery. In Proceedings of the 33th AAAI Conference on Artificial Intelligence
(AAAI). 7651–7658.

[7] Hang Ma, Jiaoyang Li, T. K. Satish Kumar, and Sven Koenig. 2017. Lifelong

Multi-Agent Path Finding for Online Pickup and Delivery Tasks. In Proceedings of
the 16th International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS). 837–845.

[8] Hang Ma, Glenn Wagner, Ariel Felner, Jiaoyang Li, T. K. Satish Kumar, and Sven

Koenig. 2018. Multi-Agent Path Finding with Deadlines. In Proceedings of the
27th International Joint Conference on Artificial Intelligence (IJCAI). 417–423.

[9] R. Morris, C. S. Pasareanu, K. Luckow, W. Malik, H. Ma, T. K. S. Kumar, and S.

Koenig. 2016. Planning, Scheduling and Monitoring for Airport Surface Opera-

tions. In Proceedings of the AAAI Workshop on Planning for Hybrid Systems.
[10] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T.

Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Eli Boyarski,

and Roman Bartak. 2019. Multi-Agent Pathfinding: Definitions, Variants, and

Benchmarks. In Proceedings of the 12th Annual Symposium on Combinatorial
Search (SoCS). 151–158.

[11] Manuela Veloso, Joydeep Biswas, Brian Coltin, and Stephanie Rosenthal. 2015.

CoBots: Robust Symbiotic Autonomous Mobile Service Robots. In Proceedings of
the 24th International Joint Conference on Artificial Intelligence (IJCAI). 4423–4429.

[12] Xiaohu Wu, Yihao Liu, Xueyan Tang, Wentong Cai, Funing Bai, Gilbert Khon-

stantine, and Guopeng Zhao. 2021. Multi-Agent Pickup and Delivery with Task

Deadlines (Extended Abstract). In Proceedings of the 14th Annual Symposium on
Combinatorial Search (SoCS). 2 pages.

[13] Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. 2008. Coordinating

Hundreds of Cooperative, Autonomous Vehicles in Warehouses. AI Magazine 29,
1 (2008), 9–9.

	Abstract
	1 Introduction
	2 Problem Definition
	3 Algorithms for MAPD-TD
	3.1 Choosing An Agent
	3.2 Choosing A Task
	3.3 Prioritized Task Assignment
	3.4 Bounding and Pruning
	3.5 Collision-free Path Planning

	4 Experimental Results
	5 Conclusions
	6 Acknowledgments
	References

